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A stability analysis was developed for the time-split method of MacCormack [7] and 
[S] as applied to a model conduction problem with motion of the continuum. Extrema in 
the magnitude of the amplification factors for variations in wave numbers were found 
and used to define the stability boundaries of the operators. Numerical experiments verified 
this analysis. A simplified form of the stability boundary was demonstrated and should 
be a practical guide for the conduction problem considered. 

T. INTRODUCTION 

In a recent investigation [I], a modification of MacCormack’s method [2] for the 
time dependent solution of the Navier-Stokes equations was applied to investigate 
laminar and turbulent mixing of bounded parallel streams. This numerical method 
was also applied to model conduction problems with similar boundary conditions 
and a uniformly moving medium. Solutions for transient conduction problems and 
steady laminar mixing of a single species fluid compared very well with exact solutions. 
Solutions were also obtained for turbulent mixing of a single species fluid but neither 
exact solutions or data were available for comparison. Therefore, test cases were 
chosen to compare as close as possible with the results of Borghi and Charpenel [3]. 
Results appeared good for inlet profiles having smooth variations with continuous 
derivatives of flow variables across the entire inlet. However, for inlet profiles more 
nearly approximating the small or zero thickness mixing region between two parallel 
streams, the time variations of properties appeared to persist indefinitely. 

The steady flow solutions of [l], as for most published solutions using MacCormacks 
method [2], are obtained by computing the flow at large times after it develops from 
an initial guess for the solution. Therefore, the correct transient behavior js not of 
primary interest while the approach to the steady state solution is extremely important. 
However, the flow inside an internal combustion engine is intrinsically transient and 
computations [4] and [5] of this flow must have the proper transient behavior. 

In a continuation of the investigations reported in [I], the programs were modified 
to study turbulent mixing of two streams of different chemical species without chemical 
or vibrational kinetics because data became available for this case. As above, results 
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for steady flow could not be obtained and the cause appeared to be the numerical 
instability of the computational algorithms. 

Since the model conduction problem involves only one differential equation instead 
of the system of four or six equations required for the fluid mechanics programs, the 
stability of the algorithm for the conduction program was investigated first. It should 
be noted that the conduction equation contained a term producing convection with 
constant velocity and therefore has the same form as the linearized form of the flow 
equations actually used in a stability analysis of the fluid mechanic equations. 

Several versions or modifications of the earlier MacCormack algorithm [2] for the 
conduction problem were investiigated using a modification of the von Neumann 
stability analysis [6]. The amplification factor for the Fourier components of a 
perturbation was found for each of the several algorithms considered. The extrema in 
magnitude of the amplification factor for all Fourier components were found. Then, 
the stability boundary was determined by the condition that the largest magnitude 
for all maxima does not exceed one. This procedure required that a common region 
for the time increment exist for four different combinations of odd and even Fourier 
components for waves in the two coordinate directions. A surprising result was the 
occurrence of a lower bound on time step. Unfortunately, none of the algorithms 
studied was stable in this context despite the fact that stable solutions were obtained 
[l] using these algorithms. 

Even though the stability analysis of the conduction algorithms is simplified by the 
presence of only one differential equation, the analytical results are sufficiently 
complex that the exact cause of this result was not apparent. It was clear that the 
complexity would be significantly reduced if some of the requirements could be 
decoupled. 

Since the original MacCormack algorithm [2] was introduced, MacCormack [7] 
has also applied a time-split method in which the solution is advanced in time 
individually by separate operators. One operator used only variations in one spatial 
coordinate while the other operator used only variations in the other spatial coordinate. 
Stability of each operator then dictated its time step and the desired decoupling was 
obtained. The investigation reported here applies the previous stability method to a 
time splitting algorithm for the model conduction problem. 

II. THE STABILITY ANALYSIS 

A. The Conduction Problem and the Analytical Solution 

The physical problem of interest has a continua moving at constant velocity u 
parallel to the x axis. Initially, the temperature T is constant, T, , but for later time 
the inlet temperature profile has a constant jump for ally, (ST), , and a cosine variation 
in y, (6T), COS(IITY). Symmetry conditions are applied on the upper (y = 1) and lower 
(y = 0) boundaries. In summary, the nondimensional form of the boundary value 
problem is: 
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Ttx, Y, 0) = T, (2) 

T&4 Y, t> = g(v) = Tco + @T), + (60, ~0s (4 (3) 

Ttx, Y, t> = Tco for infinite x (4) 

5 (x, 0, t) = 0 = g (x, 1, t) (5) 

x and y are referenced to the physical height of the region, L. Temperature has an 
arbitrary reference and time has the reference 

(6) 

where p, c and k are constant and are the dimensional values of density, specific heat 
and conductivity for the continua. /3 is the nondimensional velocity parameter 

The analytical solution of this initial boundary value problem is: 

T(x, y, t) = T, + ; (=‘I, [ERFC (&z - $ t’l’) 

+ eos ERFC ( 
x 
2(t)‘/” 

+ 4 tw)] 

+ ; (ST), eBr’2 [e-R1r ERFC ($$ - Rl(t)“2) 

+ eR1’ ERFC ( + R,(t)‘/2)] cos 7ry 

where 

RI2 = (;)” + n2 

B. The Time-Split Algorithm 

The conduction equation can be written in the conservation form: 

where 

(8) 

(9)’ 
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The computational net chosen has constant spatial increments with: 

xj =.jAx, xmax j=o,1,2 __ ““’ Ax (124 

Yk = k AY, 
1 

k = 0, 1, 2 ,..., dy Wb) 

Then, for the time-split method [7], the temperature at xi and yk can be advanced 
in time by two operators. 

or 

T&! = Tj.dt + (At),) = LtAt), T&s, T&c = Tj,k(t) WI 

The L,(At), operator for MacCormack’s time-split method [7] can be given by the 
sequence below using a predictor-corrector method: 

= (7ijT; - TjTk)/(At)z = -(F,T, - Fj+&)/(Ax) (144 

with 

and 

with 

Finally, 

aT ** t-1 at j.k 
= -(Fj*,*,,, - ~~i%Ax) 

Alternatively, the spatial differences above can be reversed in each step with 

aT * 
( 1 - 

at i.k 
ES (T;; - T&)/(At)r = -(F’f+,,,, - F&J/(Ax) 

where 

and 

t14b) 

(14c) 

(W 

(15b) 

(15c) 
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The L,(dt), operator is given by the following sequence where a predictor-corrector 
method is again used: 

ES (TjT; - T,T,)/(At), = -(G;* - G;k-l)/(Ay) 

with 

and 

GjTk = -(TjTk+l - T&)&b’) U6W 

with 

Finally, 

As with the L, operator the spatial differences above can all be reversed to produce 
the following system of equations: 

= (F:Iz( - T;k)/(dt)v = -(GjTk+l - GjTk)/@b’) (174 

where 

and 

with 

Then, 

(17b) 

(17c) 

(174 
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The allowable time step @It)* for L, is determined by the stability requirements for 
the predictor-corrector steps in (14) or (15) and the allowable time step (At), for L, is 
determined by the stability requirements for L, applying the predictor-corrector 
steps in (16) or (17). 

Symmetry in the sequence for application of the operators was found [7] to 
produce second order accuracy. For the case that (At), is much larger than (Ot)y , 
the early recommendation [7] was: 

where M is an integer and the exponent indicates the number of applications of L, 
before the next operation. For the case that (At), > (L&)~ , the roles of L, and L, in 
(18) should be interchanged. In a later investigation [8] the following operator 
sequence was recommended: 

T2i1 = T(xj 3 ylc , t + 4 = [Lv (&) L ($) -L ($)I” T(xs , ok , t) (1% 

The value of 1 for M seems most appropriate if dt is made sufficiently small. 
Two questions became important in the application of these sequences: 

1. Can L, be applied 2M times (as in (18)) each time L, is applied if M is a 
large number ? The same question applies to the appropriate version of (18) for 
WV > ta! - 

2. Is there a lower limit upon (Ot)3E or (Ot)y which makes (18) or (19) inappro- 
priate ? 

C. Stability Analysis of L, 

As in [2], [7] and [8], a von Neumann stability analysis is applied and the amplifica- 
tion of all Fourier components of a disturbance is examined. Each Fourier component 
is assumed to have the form: 

T& = W”(t) EXP[i(k,x, + k,y,)] = W”(t) EXP[i(k,j dx + k,k dy)] (20) 

where Wn(t) is the amplitude at time t and kI and k, are the wave numbers. 
Substitution of (20) into (16) yields: 

G& = -(e-’ - 1) T&/(Ay) 

iy,* = 11 + 25!%3s k, BY - 111 T&z 

(1 - e+“y)[l + 2&,(cos k, dy - 1) T;, (W 

5, =+g t21b) 
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Then, the amplification factor for L, as given by (16) is: 

,‘& =g = 1 - 2w, + 2wy2, Wr = &(l - cos k,y) (22) 
3.k 

The relations for Gj$ , T.$j and GT,$ differ if (17) is used instead of (16), but (22) is 
again obtained. 

From (22), 1 G, [ is less than 1 only for W, from 0 to 1 and equals 1 only at W, of 0 
and 1. Since w, varies from 0 for k, dy equal to 0 or an even multiple of 7~ to 2e, for 
k,dy equal to an odd multiple of V, it is apparent that 

(23) 

is necessary to satisfy the stability requirement that ] G, ] < 1. 

D. Stability Analysis of L, 

Substitution of (20) into (14) yields 

Fzk = [j3 - (eiklAz - l)] Tzk 

i=zz = [I - ~,$,$(l - e-ikldy + ta(eiklde - 2 + e-““‘“3] TjTk 

F:k* = [/J - (1 - emiklde) dx][l - 5,&l - eWikl”) 

+ (z(eiklds _ 2 + emikldz)] Tzk 

with the amplification factor given by 

G,+L [l + [,(2 + ~Q(cos k, dx - I) + 2(,2(cos k, dx - 1)2] 
3.k 

- inf, sin k, dx [I + 2&(cos kI dx - I)] 

= Re(G,) + i Im(GJ (24) 

where 

Then, 

where 

1 G, I2 = [Re(G.J12 + [Im(G,)]2 = i A,(cos k, dx>i 
i=o 

(26) 

A, = 1 - 4& + (8 - q2) [n2 - 8fzs + (r* + 4) &x4 (2W 
A, = 45, + 2(~~ - 8) cfs2 + 4(6 - 7”) 5,’ - 2(7* - 27j2 + 8) fz* Pb) 
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A, = (8 - +) &‘,” + 8(q2 - 3) t,” + tq4 - h2 f 24) tz4 (27~) 

A, = 4(2 - $) fz3 + 4(3y2 - 4) 4%” CW 

A, = 4(1 - 7j2) L4 We) 

From (20) and (15), different formulas for F$ , TtJj and FEjj result. However G, is 
again given by (24). The final step is to choose (LI~)~ such that 

I G,l* < 1 (28) 

for all possible values of the other parameters (/3, dx, and k,). 
From (26), I G, I2 is a periodic function of k, dx and hence j G, I2 has maxima and 

minima which are clearly functions of r] and 8, . Therefore, one possible approach to 
ensure stability is to choose t2: (hence (LI~)~ for a given problem) such that the maxima 
are all less than 1. The first step must be to find the Fourier components (values of kJ 
for the extrema of 1 G, 12. Next, the Fourier components producing maxima must be 
separated from the Fourier components for all extrema. Finally, & must be determined 
as a function of 17 such that the largest magnitude for all maxima is less than one. 

The smallest wave length, (Z&h,, which can be supported by the grid places the 
node points of the wave at the grid points such that 

(l&in = 2dX (29) 

As a result the maximum wave number possible is 

(k&m = + 
1 min 

=-& or (k&m Ax = n (30) 

Extrema, which may be maxima or minima occur for the values of kl producing 

0 = $- I G, I2 = 2tRe(G,)I & IRe( + Wm(GJI $- b-G>1 
1 1 1 

= - [il ~A~(COS k, ~x~-l] (sink, AX) AX (31) 

An extremum will be a maximum if 

& 1 G, I2 = (Ax)~ {2A, + (6A, - A,)(cos k, dx) 
1 

+ 4(3/I, - A,)(cos k, Ax)~ - 9A,(cos k, Lx)3 - 16A,(cos k, Ax)~) 

= WWG31 &,2 -?- DWGJI + 2 I& [Re(G,)1~2 

+ WNGJI ak,2 a2 [WC%)1 + 2 1% [Im(c31~2 < 0 (32) 
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It is apparent from (31) that the Fourier components with sink, Ax = 0 will 
produce extrema. In view of the restriction in (30), the wave numbers of interest for 
extrema are 

k,Ax==mr where m = 0 or 1 

From (24) and (33), G, at these extrema locations is real and given by 

G 
rEXT = 1 + (25, + 7&2)[(-1)“” - I] + 2[,2[(-lP - 11” 

Then, using (32) and (34) an extremum may be a maximum if 

(A$ aE2 ( - I Gz 12)Ex, = 2G,,xT(--)“+1 {2&z + q2f02 + 4LY(-lP - 

+ 27&v + &x--Y” - 11)” < 0 

When m is zero, 

G rEXT = 1 

a I Gz l2),x, = ak,2 -4(At), = -~[,(Ax)~ 

- 

(33) 

(34) 

111 

(35) 

(36) 

(37) 

Since the latter is always negative, this extremum is a maximum and the Fourier 
component with m equal to zero has the marginal stability requirement (I GZEXr j = 1) 
for all (At), . 

For m equal to 1, 

G 
xEXT = 1 - W%c + TJ~L~> + &L2 (38) 

’ Gx I”),,, = 2G,.J2 + ~~5%~ - 8L2] + 2y2ts2(1 - 45d2 (39) 

The solid curves on Figure 1 indicate the boundaries where 1 G, I&r = 1 and 
{(a2/i?k12) 1 G, I”} = 0. Th e arrows extending from these curves designate the regions 
where the extremum may be acceptable, i.e. I G, j2 < 1, and where the extremum is a 
maximum. It is apparent that this extremum is not a maximum for a region 1.1 < 7 < 
2.2. Furthermore in this region, the locations (4,) of the extremum may be double and 
triple valued with a very thin region between the curves with 1 G, I2 < 1 but a maximum 
is not predicted. 

Further understanding is enhanced by considering two limiting cases: 

a. no convection (p = 0) 
b. no thermal diffusion. 
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CONDUCTION 

&= 

FIG. 1. Stability limits for the L, operator. 

The first limiting case is actually the stability problem for G, and the results from the 
previous analysis are the dotted lines on Figure 1. This result is of course not a func- 
tion of j3 but is spread over the entire range of /3 of Figure 1 merely to show that this 
limit is very practical for /3 dx less than 0.2. 

The limiting case with no thermal diffusion is obtained from (24) merely by neglect- 
ing all terms involving [, but not 77. Then, 

1 G, I2 = 1 + (a” - a) co, (4) 

w, = 1 - cos kl Llx, a = q&2 (41) 

Since w, is always positive, 1 G, I2 < 1 only if 01~ - (Y = 01(01 - 1) is negative. By 
definition, 01 is always positive. Therefore, stability requires (II < 1 or 

Wz -=~“<+p;x (Ax)~ (42) 

The upper stability limit for this case is shown on Figure 1 to be a natural asymptote 
of the more general case for large ,L3. 

Only the roots of (31) producing sin k, Ax = 0 have been examined to this point. 
The roots corresponding to the remaining possibilities (contents of the square bracket 
in (31)) were investigated next. These roots are obtained from the cubic equation 

A, + 2A, cos kl Ax + 3A, cos2 k, Ax + 4A, toss k, Ax = 0 (43) 

It is apparent that these roots will be functions of 7 and & and that (32) must be 
applied to separate the maxima. Analytical solutions of (43) could not be found and a 
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computer program was used to scan the range of 5, and 7 on Figure 1 for 
maxima. 

With 7 fixed at a value less than 0.4, the roots of (43) have cos k, Ax > 1 with no 
real k, for 4, < 0.25. Then a minimum occurs near k, AX = r for .$, slightly larger 
than 0.25 and moves toward k, dx = 0 as 5, increases. With the results of Figure 1, it 
is apparent that for 6, < 0.25, I G, / will decrease from a maximum of 1 at k, dx of 0 
to a minimum at k, dx = rr. For 0.25 < 4,) I G, 1 will decrease from 1 at k, Ax of 0 
to a minimum. Then [ G, 1 will increase to a maximum, which is greater than or equal 
to 1 for [, 3 0.5, at k, Ax of rr. 

Therefore, with f, below the curve for I GZEXT / = 1 and 77 less than 0.4, stable 
calculations should result. For 0.4 < 7 < 1.1, the variation of j G, 1 with .$, at 
fixed 7 is qualitatively the same as for smaller 7 expect that the minimum for 0 < 
k, Ax -C 7r does not occur until [, is above, the curve for ((d2/dk12)[ G, j)EXT = 0. 
Stability still occurs for E, below the curve for 1 GzEXT 1 = 1. 

For a fixed 7 in the range 1.1 < q < 2.2, I G, I decreased from a maximum of 1 at 
kl Ax = 0 to an minimum at k, Ax = 71 where 5, is a small number. For 8, fixed 
above some threshold value and for increasing k, Ax, j G, I decreases from a maximum 
of 1 at k, Ax = 0 to a minimum, increases to a maximum, and decreases to a minimum 
at k, Ax = rr. The values of 5, where the maximum is 1 are indicated by the circles 
on Figure 1. 

When 7 is fixed at a value greater than 2.3, the variation of / G, 1 with kl Ax is quali- 
tatively the same as when 17 < 1.1. k, Ax = 0 is always the location of the maximum 
with 1 G, j = 1 and k, Ax = 7r is the location of a minimum for .$, below the curve 
for (dzG,2/dk,2)EXT = 0. For larger [, , a minimum occurs for 0 < k, Ax < 7~ and a 
maximum occurs at kl Ax = 7r. With 5, below the curve for I G%XT 1 = 1, the maxi- 
mum at kl Ax = v is less than 1 but, when 4, is larger, the maximum is greater than 1. 

In summary, the above analysis shows that the stable region for L, is the shaded 
region on Figure 1 given by the following criteria: 

(a) For /3 Ax = 77 < rll, 

(~It),/(dx)~ < {[, for j G, I& = 1 with k, Ax = n-f (444 

(cl For qu ,< B Ax, 

(At)J(Ax)” < (5, for I G, I& = 1 with k, Ax = T} (44c) 

where Q and y, are the lower and upper values of 7 at the intersections of the curves 
on Fig. 1 where I G, I&, = 1 for k, Ax = rr with and without conduction. However, 
it is also apparent from Figure 1 that a more practical and much less complicated 
upper stability boundary is formed by using the smaller of the values of E, = (At),/ 
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(Ax)~ where j G, ii,= = 1 at fixed 77 = /3 dx for the limiting cases of no conduction 
or no convection, i.e., 

(A t>z __- = the smaller of 0.5 or 
(A--d2 

E. Impact of Stability Requirements Upon the Time-Split Algorithm 

The stability analysis here requires that L, and L, have upper but not lower 
stability bounds. Therefore, the operations in (18) and (19) are not limited by the 
second question in Section IIB. The first question in Section 11B is best resolved by 
numerical experiments. 

III. NUMERICAL EXPERIMENTS 

All numerical experiments were conducted for the problem in (1) to (5) with: 

T, = 1, g(y) = 1.5 - 0.5 cos (7~) (46) 

Then, the exact solution is obtained from (8) with 

T, = 1, (W), = 0.5, (U), = -0.5 

The conduction problem of [l] was modified to apply the L, operator of (14) and 
the L, operator of (16) in the following operator sequence: 

(47) 

At = (At), = 2M(At), , tn+l = t” + At (48) 

Then, by individually varying M, (At), and (At)y the algorithms in (18) and (19) can be 
tested and the validity of the stability boundaries can be verified. 

A figure of merit for the comparison of exact and numerical solutions is the relative 
error given by: 

%c = IL?, - TEXA&~ 3 Yk 3 f%/[dl) - do)li (49) 

This relative error was calculated at every computational point in space and after each 
time cycle as the nomenclature indicates. Since the amount of data to be scanned for 
this comparison would be quite large with this figure of merit, the figure of merit used 
in the graphs is 

EMAX = the maximum value of E& at t” (50) 

Because the stability of L, is much more complicated, the value of (At)* was first 
varied parametrically using a “safe” value of (At)v . Ten intervals (Kll = 10) is a 
practical choice for the y range (0 to 1). Therefore, in accordance with (23) the stable 
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range for L, is (Ot)y < 0..5(.1)2 = .005 and a “safe”, convenient value in the stable 
range is 

(A& = 0.004 (51) 

Note, that the appropriate stability region for the corresponding case (odd harmonics) 
in the unpublished stability analysis of the MacCormack algorithms used in [l] is 
the darkly shaded region in the range 1.8 < p Ax < 3.4. Since comparison with those 
results was desired, Ax = 0.35 was chosen to produce a point close to the center of 
that region with /3 = 7. Ten intervals in the x direction then produces a maximum x of 
3.5. With (At)zl fixed, variation of M implies variation of (At)P consistent with (48) 
which produces the required symmetry of (47). 

As shown on Table I, a series of checkout runs were made at p Ax = 2.45 with 
(At)y fixed at 0.004 and M varying from 7 to 1. Then, (At),/(d~)~ varies from values 
above the upper stability boundary (0.41) to values significantly below the lower 
bound of the darkly shaded region. For M = 7, which has (At)E just above the upper 
boundary, instability occurred quickly as predicted. As shown in Figure 2, the algo- 
rithm was unstable for M = 6 with (At)z just below the upper stability boundary. For 
smaller M, stable solutions were obtained. The case with M = 3 has (At), just below 
the lower limit of the darkly shaded region and, for A4 = 1, (At)$ is much below this 
lower limit. As A4 decreases below 5 no improvement in stability is obtained but 
accuracy does improve. Also shown in Table 1 is the parameter T, which is the time 
required to obtain a reasonable approach to steady state at the downstream location 
x = xma, i.e. when 

(T - steady state T)/(initial T - steady state T) < 0.01 

FIG. 2. Maximum relative error for Cases 1 through 6. 
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FIG. 3. Maximum relative error for Cases 7 through 9. 

Cases 7 to 9, as shown on Figure 3, test the validity of (23) with (&)z fixed at the 
largest value producing stability in the previous sequence. For M = 3, the value of 
(Ot)y is above the predicted upper stability limit and the results clearly demonstrate 
instability. For the next smaller (LI~)~ with M = 4, a stable solution was obtained. 
A much smaller @It& with M = 10 produces little improvement in stability or 
accuracy. 

0.16 

i 
/3=I ,(At)y=o.m4, Ax=0.35 

I 
IO 12 

FIG. 4. Maximum relative error for Cases 10 through 12. 

58Ii30/3-7 
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The upper stability boundary for L, was then checked for a value of /3 in each range 
of importance as shown on Figure 1. For fi dx < 0.2, the upper stability boundary is 
constant (& = 0.5). With /3 = 1, the upper stability boundary has 5, w 0.52 from 
Figure 1. Cases 10 to 12 of Table I and Figure 4 verify this prediction. Case 10 for 
M = 9 has & above this value and instability occurs. When M = 8 (Case ll), & is at 
this boundary and the solution is marginally stable. A stable solution is obtained for 
Case 12 when .$, is well below this limit. 

For p dx = 1.6 (Cases 13 to 16), the upper stability limit from Fig. 1 is 5, = .64. 
The results shown on Figure 5 and in Table 1 show that instability occurs for 4, signi- 
ficantly above this value (M = 11 and 25). However, for it4 = 10 where 5, is slightly 
above this limit, stability appears to be achieved. For M = 1, which has 5, significantly 
below the limit, the solution is stable and accurate. 

,9AX= 1.6 

AX =0.35 

M= I 

c 

FIG. 5. Maximum relative error for Cases 13 through 16. 

Cases 17 to 21 of Table 1 and Figure 6 test the stability boundary at fi dx = 1.95 
which is in the range where the stability boundary is determined by the roots of (43). 
At this p dx, M = 140 produces a value of 5, which is in the upper region with 
1 G,, I < 1 but the extremum is a minimum. M = 15 and 8 produces values of E, 
which are in the upper right region with 1 GZEXT. 1 > 1. Instability occurred almost 
immediately for cases 17 and 18 and is developing for M = 8. For A4 = 1 and 7, E, 
is well below the upper stability limit of 0.52 and stable solutions were obtained. 

The last two cases of Table 1 and Figure 7 have /3 dx well into the region where the 
influence of conduction is negligible. The upper limit (0.11) is exceeded for M = 2 and 
instability occurs. When M = 1, c, is well below the stability limit and stable solutions 
are obtained. 
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i BAx= I.95 

0.1 

0 

tn 

FIG. 6. Maximum relative error for Cases 17 through 21. 

0.35 
L- M=2 

8525 
wy=0.004 

AX =0.35 

OO 
! 9 I 

0.1 
t” 

0.2 0.3 

FIG. 7. Maximum relative error for Cases 22 and 23. 

IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS 

Question 1 of Section 1lB has been answered in that stable solutions were obtained 
in the numerical experiments with the time split method for large values of M if the 
upper stability limit is not exceeded. Unlike the results for an unpublished stability 
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analysis of the original MacCormack method [2], no lower stability limit was predicted 
by the present stability analysis. Furthermore, the numerical experiments for the 
time split method verified this finding. Therefore, question 2 in Section IIB has also 
been resolved and no complicating lower limit exists. 

The examination of extrema in the amplification factor was very useful in defining 
the stability boundary over the entire range of parameters of interest. However, this 
technique was most useful for the range of parameters where the maxima did not occur 
for Fourier components with wave numbers of 0 or 1. For the conduction problem 
examined here, this range was not extensive and the approximate stability boundary of 
(49, which is an obvious choice in the absence of this analysis, appears to be reason- 
able. However, accurate determination of the stability boundaries may be much more 
crucial in other problems and examination of extrema in the amplification would have 
more importance. 
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